[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [InetBib] „Was sind eigentlich Daten?“
- Date: Sun, 20 Oct 2013 15:26:24 +0200
- From: martina.riegler <martina.riegler@xxxxxxxxxxx>
- Subject: Re: [InetBib] „Was sind eigentlich Daten?“
Von Samsung Mobile gesendet
-------- Ursprüngliche Nachricht --------
Von: h0228kdm <h0228kdm@xxxxxxxxxxxxxxxx>
Datum: 18.10.2013 21:00 (GMT+01:00)
An: Internet in Bibliotheken <inetbib@xxxxxxxxxxxxxxxxxx>
Betreff: Re: [InetBib] „Was sind eigentlich Daten?“
Sehr geehrter Herr Voß,
ich glaube nicht, dass man über Daten diskutieren kann, ohne den Anteil
an Information zu hinterfragen. Dass die Informationswissenschaft zum
Thema Datenakquisition, Datenerfassung, Datenverwaltung,
Datenarchivierung, Data Mining etc. zu wenig sagt, wäre mir neu, zumal
gerade die Datenerfassung in der Dokumentation immer ein zentrales
Thema war. Ebenso die Datenkompression durch Beseitigung von Noise und
überflüssiger Redundanz, und die Informatinskomression durch Wissen.
Die eher neue Problematik von Linked Data und Big Data hängt nun damit
zusammen, dass in den letzten Jahren die Übernahme von digitalen Daten
(der manuellen Dateneingabe) immer wichtiger wurde, sowohl von anderen
Rechnern, als auch von der zunehmenden Zahl an Sensoren und bildgebenden
Verfahren. Hierin dürfte auch der Grund liegen, warum Kuhlen „‘Daten‘ …
in der Regel synonym mit ‚Messdaten‘ verwendet.“, obwohl gerade in der
bibliothekarischen Datenerfassung, noch immer große Datenmengen keine
„Messdaten“ sind.
Um hier nur ein typisches Beispiel unserer Zeit für Big Data kurz zu
erwähnen: Seit dem man Gravitationswellen aus dem Universum untersucht,
empfängt man unglaubliche Mengen an Daten, die fast vollständig
verrauscht sind. Aus ihnen die Bruchteile an Information und
ausreichender Redundanz mit Bayesscher Wahrscheinlichkeit
herauszufiltern ist eine wahre Kunst. Ähnlich war es bei den hunderten
von Petabytes bei der Entdeckung der Higgs Bosonen. Auch Big data
Prognosen in Echtzeit sind eine interessante Herausforderung, ebenso wie
das Data Mining und die Verwaltung von Big Data in Clouds.
Grundsätzlich handelt es sich hier überall um Daten, weil Information,
Rauschen und Redundanz Konglomerate bilden.
Wenn die DIKW-Pyramide ein zunehmendes „Verstehen“ erfordert, so muss
man vier Ebenen des Verstehens genau unterscheiden, obwohl unsere
natürliche Sprache dafür gar keine eigenen Worte hat.
1. „Das Verstehen auf der Ebene der Informationstheorie. Ein Empfänger
(ein Lebewesen oder auch ein Computer) einer Nachricht hat zum Beispiel
etwas akustisch verstanden, reagiert aber beliebig. (Alter Spruch von
Hundebesitzern. Mein Hund hört gut, er reagiert aber nicht.) Oder etwas
ernster gesagt, ein ausreichend intelligenter Automat versteht Zeichen
auf der Informationsebene, er vermag sie richtig zu decodieren und als
neu, als redundant oder als Rauschen zu identifizieren.
2. Das Verstehen auf der Ebene der Semiotik. Ein Empfänger einer
Nachricht hat diese inhaltlich verstanden, denn er erkennt die
pragmatische Bedeutung der Zeichen auf der semiotischen Ebene. Er
interpretiert sie und bringt sie in einen Zusammenhang mit anderen
verwandten Begriffen. Auch das vermag schon jeder Hund, wenn man ruft,
„komm her“, und er belegt sein Verständnis, indem er entsprechend
reagiert.
3. Das Verstehen auf der Wissensebene. Der Empfänger versteht die an ihn
gerichtete Nachricht nicht nur auf der informatorischen und der
semiotischen Ebene, sondern erkennt auch noch die Begründung
beziehungsweise die Konsequenzen, die sich aus dieser Nachricht ergeben.
Auch diese Verstandesebene erfüllt beispielsweise ein Hund noch. So kann
man erkennen, dass er beim Ruf „komm her“, unter bestimmten
Randbedingungen sofort den Schluss zieht, dass er jetzt spazieren gehen
wird.
4. Das Verstehen auf der Bewusstseinsebene. Ein Empfänger erkennt nicht
nur den Wissensgehalt einer Nachricht, sondern reflektiert dieses Wissen
auch noch in der Weise, dass er ein Wissen über sein Wissen gewinnt.
Dies vermag ein Hund beispielsweise nicht zu leisten. Er kann
erfahrungsgemäß über sein Wissen definitiv nicht nachdenken. Bei Affen
wird seit Jahren versucht herauszufinden, wie weit sie diese Hürde zu
überwinden vermögen, wobei man allerdings bei den Interpretationen
entsprechender Versuche sehr vorsichtig sein muss. Erfahrungen bei
Pferden, wie beispielsweise beim „Klugen Hans“, haben deutlich gemacht,
mit welch spezialisierter Sensorik dieses Pferd begabt war, und damit
eine Intelligenz (also ererbtes Wissen) besaß, das uns Menschen
weitgehend unzugänglich ist.“
(Zwischen Informationsflut und Wissenswachstum S. 112/113; 2009)
MfG
Walther Umstätter
Am 2013-10-18 10:24, schrieb Jakob Voß:
Hallo,
Vielen Dank für den Verweis auf meinen Artikel in LIBREAS
<http://libreas.eu/ausgabe23/02voss/>. Die daran anschließende
Definition bezieht sich aber leider wenig auf auf Inhalt oder Thema
des Artikels (nämlich Daten) sondern vor allem auf Informationen.
Informationen sind nicht Thema meiner Untersuchung. Ich schreibe:
"Während [...] Informationen in verschiedenen Disziplinen eine
zentrale Rolle spielen, führend Daten als primärer
Forschungsgegenstand noch immer ein Schattendasein. [...] Erst in den
letzten Jahren ist neben rein affirmativen Trends wie Linked Data und
Big Data auch eine kritische Auseinandersetzung mit der Frage zu
beobachten, was Daten eigentlich sind."
Angesichts des Hypes um Big Data, Open Data, Forschungsdaten etc.
halte ich das Schweigen der Informationswissenschaft zu Daten für
schade. Da hilft es nichts, ganz schnell von Date zu Informationen
überzuleiten und die alten Diskussionen über den Informationsbegriff
wieder hervorzuholen.
Ich habe trotzdem einige Anregungen aus der Diskussion hier gezogen
und unter <https://github.com/jakobib/libreas2013/issues/1>
zusammengefasst. Sowohl die DIKW-Pyramide als auch Kuhlen hätten im
Artikel zumindest erwähnt werden sollen. Mich würde von Rainer Kuhlen
dazu interessieren, ob und wie er Daten und die formal-syntaktische
Ebene Informationen von Informationen voneinander abgrenzt.
Schöne Grüße
Jakob Voß
--
Jakob Voß <jakob.voss@xxxxxx>, skype: nichtich
Verbundzentrale des GBV (VZG) / Common Library Network
Platz der Goettinger Sieben 1, 37073 Göttingen, Germany
+49 (0)551 39-10242, http://www.gbv.de
--
http://www.inetbib.de
--
http://www.inetbib.de
Listeninformationen unter http://www.inetbib.de.